Детали продукта
Место происхождения: Китай
Фирменное наименование: ENNENG
Сертификация: CE,UL
Номер модели: PMM
Условия оплаты & доставки
Количество мин заказа: 1 набор
Цена: USD 500-5000/set
Упаковывая детали: мореходная упаковка
Время доставки: 15-120 дней
Условия оплаты: L/C, T/T
Поставка способности: 20000 наборов/год
Имя: |
Изготовитель мотора PMSM |
Настоящий: |
AC |
Материал: |
Редкая земля NdFeB |
Ряд силы: |
5.5-3000kw |
Установка: |
IMB3 IMB5 IMB35 |
Обслуживание: |
ODM, OEM |
Особенности: |
Высокая эффективность, энергосберегающее, низкое обслуживание |
Ранг защиты: |
IP54 IP55 IP68 |
контроль: |
Sensorless |
Обязанность: |
S1 |
Имя: |
Изготовитель мотора PMSM |
Настоящий: |
AC |
Материал: |
Редкая земля NdFeB |
Ряд силы: |
5.5-3000kw |
Установка: |
IMB3 IMB5 IMB35 |
Обслуживание: |
ODM, OEM |
Особенности: |
Высокая эффективность, энергосберегающее, низкое обслуживание |
Ранг защиты: |
IP54 IP55 IP68 |
контроль: |
Sensorless |
Обязанность: |
S1 |
Изготовитель мотора участка PMSM наивысшей мощности управлением Sensorless низкоскоростной 3
Что мотор постоянного магнита одновременный?
Мотор постоянного магнита одновременный (PMSM) тип электрического двигателя который работает используя постоянные магниты врезанные в своем роторе. Он также иногда назван безщеточный мотор AC или одновременный мотор постоянного магнита.
В PMSM, статор (неподвижная деталь мотора) содержит серию катушек которые подпитаны в последовательности для создания вращая магнитного поля. Ротор (вращающая часть мотора) содержит серию постоянных магнитов которые аранжированы, что производят магнитное поле которое взаимодействует с магнитным полем произведенным статором.
По мере того как 2 магнитного поля взаимодействуют, ротор вращает, производящ механическую энергию которую можно использовать для того чтобы привести машинное оборудование или другие приборы в действие. Потому что постоянные магниты в роторе обеспечивают сильное, постоянн магнитное поле, PMSMs сильно эффективно и требует, что меньше энергии работает чем другие типы электрических двигателей.
PMSMs использовано в большом разнообразии применений, включая электротранспорты, промышленное машинное оборудование, и бытовые приборы. Они известный за их высокая эффективность, низкие требования к техническому обслуживанию, и точный контроль, который делает ими популярный выбор для много разных видов систем.
Работа мотора постоянного магнита одновременного:
Деятельность мотора постоянного магнита одновременного очень проста, быстра, и эффективна сравниванный к обычным моторам. Деятельность PMSM зависит от вращая магнитного поля статора и постоянн магнитного поля ротора. Постоянные магниты использованы как ротор для создания постоянн магнитного потока и для того чтобы работать и запирать на синхронной скорости. Эти типы моторов подобны безщеточным моторам DC.
Формируют группы phasor путем присоединяться к замоткам статора друг с другом. Присоединяются к совместно для того чтобы сформировать этим группам phasor различные соединения как звезда, перепад, и двойные и одиночные фазы. Уменьшить гармоничные напряжения тока, замотки должны быть обветренный скоро друг с другом.
Когда трехфазная поставка AC дается статору, она создает вращая магнитное поле и постоянн магнитное поле наведенные должные к постоянному магниту ротора. Этот ротор работает в синхронизме с синхронной скоростью. Вся деятельность PMSM зависит от воздушного зазора между статором и ротором без нагрузки.
Если воздушный зазор большой, то будут уменьшены потери windage мотора. Полюсы возбуждения созданные постоянным магнитом заметный. Моторы постоянного магнита одновременные само-не начинают моторы. Так, необходимо контролировать переменную частоту статора электронно.
Структуры мотора после полудня
Структуры мотора после полудня можно отделить в 2 категории: внутренний и поверхностный. Каждая категория имеет свое подмножество категорий. Поверхностный мотор премьер-министра может иметь свои магниты дальше или inset в поверхность ротора, для увеличения робастности дизайна. Внутренние располагать и дизайн мотора постоянного магнита могут поменять широко. Магниты мотора IPM могут быть расположенным ступенями inset как большой блок или по мере того как они приходят ближе к ядру. Другой метод иметь их быть врезанным в картине спицы.
Разницы между мотором постоянного магнита и асинхронным двигателем
01. Структура ротора
Асинхронный двигатель: Ротор состоит из металлического стержня и роторов замотки, главным образом белк-клетки и провод-раны. Ротор белк-клетки брошен с алюминиевыми барами. Магнитное поле алюминиевого бара режа статор управляет ротором.
Мотор PMSM: Постоянные магниты врезаны в поляках ротора магнитных, и управлены для того чтобы вращать вращая магнитным полем произведенным в статоре согласно принципу магнитных поляков такого же участка привлекая различные отталкивания.
02. Эффективность
Асинхронные двигатели: Нужно поглотить настоящее от возбуждения решетки, приводящ в некоторое количество потерях энергии, течении мотора реактивного, и фактора низкой мощности.
Мотор PMSM: Магнитное поле обеспечено постоянными магнитами, ротору не нужно возбудить течение, и эффективность мотора улучшена.
03. Том и вес
Польза высокопроизводительных материалов постоянного магнита делает магнитное поле воздушного зазора моторов постоянного магнита одновременных большой чем это из асинхронных двигателей. Размер и вес уменьшены сравненный к асинхронным двигателям. Будет один или два размер кадра более низкий чем асинхронные двигатели.
04. Мотор начиная течение
Асинхронный двигатель: Он сразу начат электричеством частоты силы, и начиная течение большое, которое может достигнуть 5 к 7 раз расклассифицированному течению, которое имеет больший удар по энергосистеме в одно мгновение. Большое начиная течение причиняет падение напряжения тока сопротивления утечки замотки статора увеличить, и начиная вращающего момента небольшое настолько сверхмощное начало нельзя достигнуть. Даже если инвертор использован, он может только начать внутри ряд течения требуемой производительности.
Мотор PMSM: Он управляется преданным регулятором, который нуждается требованиях к требуемой производительности редуктора. Фактическое начиная течение небольшое, течение постепенно увеличено согласно нагрузке, и начиная вращающий момент большой.
05. Фактор силы
Асинхронные двигатели имеют фактор низкой мощности, они должны поглотить большое количество реактивного течения от энергосистемы, большое начиная течение асинхронных двигателей причинит недолгосрочный удар по энергосистеме, и долгосрочная польза причинит некоторое повреждение к оборудованию и трансформаторам энергосистемы. Необходимо добавить блоки компенсации силы и выполнить компенсацию реактивной мощности для обеспечения качества энергосистемы и для увеличения цены пользы оборудования.
Никакой наведенный поток в роторе мотора постоянного магнита одновременного, и фактор силы мотора высок, который улучшает качественный фактор энергосистемы и исключает потребность установить компенсатор.
06. Обслуживание
Структура асинхронного двигателя + редуктора произведет вибрацию, жару, высокую интенсивность отказов, большое потребление смазки, и высокие ручные расходы на техническое обслуживание; она причинит некоторые потери времени простоя.
Трехфазный мотор постоянного магнита одновременный управляет оборудованием сразу. Потому что редуктор исключен, скорость ведомого вала мотора низка, механический шум низок, механическая вибрация небольшая, и интенсивность отказов низка. Все управляющее устройство почти не требующе ухода.
EMF и уравнение вращающего момента
В одновременной машине, средний EMF навел в участок вызван динамикой наводит EMF в одновременном моторе, поток отрезанный каждым проводником в революцию Pϕ Weber
После этого время принятое для того чтобы завершить одну революцию sec 60/N
Средний EMF навел в проводник может быть высчитан путем использование
(PϕN/60) x Zph = (PϕN/60) x 2Tph
Где Tph = Zph/2
Поэтому, средний EMF в участок,
= 4 x ϕ x Tph x PN/120 = 4ϕfTph
Где Tph = нет. поворотов соединятьых последовательно в участок
ϕ = поток/поляк в Weber
P= нет. поляков
Частота F= в Hz
Zph= нет. проводников соединятьых последовательно в участок. = Zph/3
Уравнение EMF зависит от катушек и проводников на статоре. Для этого мотора, фактор Kd распределения и фактор Kp тангажа также рассмотрены.
Следовательно, e = 4 x xKd x Kp ϕ x f x Tph
Уравнение вращающего момента мотора постоянного магнита одновременного дается как,
T = (3) sinβ x Eph x Iph x/ωm
Моторы AC постоянного магнита (PMAC) имеют широкий диапазон применений включая:
Промышленное машинное оборудование: Моторы PMAC использованы в разнообразие применениях промышленного машинного оборудования, как насосы, компрессоры, вентиляторы, и механические инструменты. Они предлагают высокую эффективность, плотность наивысшей мощности, и точный контроль, делая их идеальным для этих применений.
Робототехника: Моторы PMAC использованы в применениях робототехники и автоматизации, где они предлагают высокую плотность вращающего момента, точный контроль, и высокую эффективность. Они часто использованы в робототехническом оружии, grippers, и других системах контроля за движением.
Системы HVAC: Моторы PMAC использованы в топлении, вентиляции, и системах кондиционирования воздуха (HVAC), где они предлагают высокую эффективность, точный контроль, и малошумные уровни. Они часто использованы в вентиляторах и насосах в этих системах.
Системы возобновляющей энергии: Моторы PMAC использованы в системах возобновляющей энергии, как ветротурбины и солнечные отслежыватели, где они предлагают высокую эффективность, плотность наивысшей мощности, и точный контроль. Они часто использованы в генераторах и системах слежения в этих системах.
Медицинское оборудование: Моторы PMAC использованы в медицинском оборудовании, как машины MRI, где они предлагают высокую плотность вращающего момента, точный контроль, и малошумные уровни. Они часто использованы в моторах которые управляют двигающими частями в этих машинах.
SPM против IPM
Мотор премьер-министра можно отделить в 2 основных категории: поверхностные моторы постоянного магнита (SPM) и внутренние моторы постоянного магнита (IPM). Никакой тип дизайна мотора не содержит бары ротора. Оба типа производят магнитный поток постоянными магнитами прикрепленными к или внутренностью ротора.
Моторы SPM имеют магниты прикрепленные к экстерьеру поверхности ротора. Вследствие этого механическая установка, их механическая прочность более слаба чем это из моторов IPM. Ослаблятьая механическая прочность ограничивает скорость мотора максимальную безопасную механическую. К тому же, эти моторы показывают очень ограниченное магнитное saliency (≈ Lq Ld). Значения индуктивности измерили на терминалах ротора последовательны независимо от положения ротора. Из-за близко коэффициента saliency единства, дизайны мотора SPM полагаются значительно, если не совершенно, на магнитном компоненте вращающего момента для произведения вращающего момента.
Моторы IPM имеют постоянный магнит врезанный в ротор самого. Не похож на их двойники SPM, расположение постоянных магнитов делает моторы IPM очень механически ядровым, и соответствующим для работать на очень высоких скоростях. Эти моторы также определены их относительно высоким магнитным коэффициентом saliency (Lq > Ld). Должный к их магнитному saliency, мотор IPM имеет способность произвести вращающий момент путем пользоваться и компонентами магнитных и нежелания вращающего момента мотора.
Очистите ослаблять/делать интенсивней моторов премьер-министра
Поток в моторе постоянного магнита произведен магнитами. Поле потока следовать некоторым путем, который можно поддержать или сопротивляться. Поддерживать или делать поле интенсивней потока позволят мотору временно увеличить продукцию вращающего момента. Сопротивляться полю потока отрицает существующее поле магнита мотора. Уменьшенное поле магнита будет ограничивать продукцию вращающего момента, но уменьшает напряжение тока назад-emf. Уменьшенное напряжение тока назад-emf освобождает вверх напряжение тока для нажатия мотора работать на более высоких скоростях ведомого вала. Оба типа деятельности требуют дополнительного течения мотора. Направление мотора настоящего через d-ось, при условии регулятором мотора, определяет желательный результат.
Немного небольших проблем которые легко обозены о моторе:
1. Почему нельзя general motors использовать в зонах плато?
Высота имеет отрицательные влияния на повышении температуры мотора, короне мотора (высоковольтном моторе), и коммутировании мотора DC. Следующие 3 аспекта должны быть замечены:
(1) высокий высота, более высокий повышение температуры мотора, и более низкий сила выхода. Однако, когда температура уменьшает с увеличением высоты достаточно для того чтобы возмещать потерю влияние высоты на повышении температуры, сила требуемой производительности мотора может остаться неизменно;
(2) измерения Анти--короны должны быть приняты когда высоковольтный мотор использован в плато;
(3) высота не хороша для коммутирования мотора DC, поэтому внимания оплаты к выбору материалов щетки углерода.
2. Почему мотор не соответствующий для деятельности легкой нагрузки?
Когда мотор побежит на легкой нагрузке, он причинит:
(1) фактор силы мотора низок;
(2) эффективность мотора низка.
(3) оно причинит отход оборудования и неэкономичную деятельность.
3. Почему не смогите мотор начало в холодной окружающей среде?
Чрезмерная польза мотора в низкотемпературной окружающей среде причинит:
(1) отказы изоляции мотора;
(2) носить замораживания тавота;
(3) напудрен порошок припоя соединения провода.
Поэтому, мотор следует быть нагрет и сохранен в холодной окружающей среде, и замотки и подшипники должны быть проверены перед бегом.
4. Почему не может мотор 60Hz использовать электропитание 50Hz?
Когда мотор конструирован, лист стали кремния вообще работает в регионе сатурации кривой замагничивания. Когда напряжение тока электропитания постоянн, уменьшение частоты увеличит магнитный поток и течение возбуждения, приводящ в росте потребления мотора настоящего и медного, которое окончательно приведет к росту повышения температуры мотора. В строгих случаях, мотор может сгореться должным к перегревать катушки.
5. начало мотора мягкое
Мягкое начало имеет ограниченное энергосберегающее влияние, но оно может уменьшить удар запуска по энергосистеме, и может также достигнуть ровного начала защитить блок мотора. Согласно теории сбережений энергии, должной к добавлению относительно сложной управляемой схемы, мягкое начало не только не сохраняет энергию, и также увеличивает энергопотребление. Но оно может уменьшить начиная течение цепи и сыграть защитную роль.